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Abstract

Dispersion relations of the seven partial Love-type waves (LTW7) have been found numerically for two-
layer systems consisting of the class-23 cubic piezoelectric media Bi12SiO20 and Bi12GeO20; for two cases: a
layer of Bi12SiO20 on a substrate of Bi12GeO20; and the reverse configuration. A few modes of LTW7 waves
are shown, the first of which begins at a threshold value of khth � 5:3: The values of khth for the classical
Love waves are tabulated for comparison with the LTW7 waves. ‘‘Dispersive solutions’’ have also been
found, whose phase speeds are higher than the bulk shear wave speeds in either medium.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Layered structures with inhomogeneous boundary conditions, for example, a thin film on a
substrate, are currently of interest. The important thing is to know phase velocities and dispersion
relations, for applications in filters and acoustic delay lines. In 1911, Love [1] analyzed a layered
system consisting of an isotropic thin film on an isotropic substrate, solid-coupled at their
interface. He concluded that shear surface waves localized in the thin film and decaying in the
substrate can exist if the velocity of the bulk shear wave in the thin film is less than that in the
substrate. These shear surface waves are now known as the Love waves; their polarization is
see front matter r 2004 Elsevier Ltd. All rights reserved.
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perpendicular to the sagittal plane formed by both the normal to the interface of a medium and
the wavevector in the direction of wave propagation. Interest was later shown in the possible
existence of waves with the same polarization in piezoelectric, anisotropic layered systems [2] for
applications to delay lines, filters, etc., and the waves were called ‘‘pure’’ Love-type waves
(LTWs). Such ‘‘pure’’ LTWs can exist in layered systems only in special so-called highly
symmetric directions of wave propagation, for example, if the sagittal plane is perpendicular to an
odd-order symmetry axis. It was also noted in Ref. [2] that finding the dispersion relation of these
waves is very complicated numerically. But in particular cases, for example, the so-called
transversal-isotropic cases treated in Refs. [3,4], LTW waves can be studied analytically. In Ref.
[3] the surface waves of Love-type for systems of an isotropic layer on a piezoelectric substrate
consisting of either the hexagonal (the classes 6, 622, 6mm) or the tetragonal (the classes 4, 422,
4mm) monocrystals were analytically treated and in Ref. [4] vice versa: a piezoelectric layer
consisting of material of the same classes on an isotropic substrate. Also the transversal-isotropic
case was discussed in Ref. [5], where a CdS piezoelectric thin film of class 6mm covers isotropic
substrates. Dispersion relations for the layered systems can be numerically obtained.
In this paper, results concerning the numerical study of the layered systems are reported, for the

case when both the layer and the substrate are piezoelectric cubic crystals Bi12SiO20 and
Bi12GeO20 of class 23, taking into account the piezoeffect for both media. It is thought that such
layered systems can be readily manufactured.
2. Description of the problem

Today, it is well understood that bulk shear waves in piezoelectric bulk monocrystals are not
bulk waves, but the surface Bleustein–Gulyaev (BG) waves [6,7] with polarization perpendicular
to the sagittal plane. In the case when a piezoelectric thin film covers a piezoelectric bulk crystal,
the LTWs can probably exist. Layered systems, in which either a substrate in Refs. [3,8] or a thin
film in Ref. [4] is a piezoelectric (either tetragonal or hexagonal) crystal with a second isotropic
medium, were analytically studied, and possible changes were shown in the modes of the LTWs
due to the piezoeffect for the transversal-isotropic case. The analytical study of layered systems of
a piezoelectric layer on a piezoelectric substrate is very complicated, even for the transversal-
isotropic cases.
Principles of investigations of dispersive surface waves in layered piezoelectric media are written

in detail in Refs. [2,9]. First of all, it is necessary to find the complete displacements and complete
electrical potential for each medium, separately using material constants for each medium:
densities r; elastic Cijkl and piezoelectric eijk constants, dielectric coefficients eij ; and solving
propagation equations. For the free space, the dielectric coefficient e0 is taken. This part of the
calculation is like the one on the investigations of surface waves in piezoelectric bulk
monocrystals. Details about this one can also be found in Refs. [10,11]. However, the differences
of the investigations between the bulk medium and the layered medium are in the boundary
condition determinants (BCDs). For layered media [2,9], the BCD of thirteenth order (taking into
account the piezoeffect for both the layer and the substrate) is a complex number, and there will
be solutions of the phase velocity, if the BCD13 falls to zero. The BCD will be ninth order, BCD9,
without taking into account the piezoeffect for centrosymmetrical crystals. Numerically, it means
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to find the minima of the BCD13. In the highly symmetric cases, described in Refs. [2,9], the
BCD13 can be written as two BCDs, either the BCD7 of seventh order for the piezo-
electromechanical waves of Love-type (LTW7) and the BCD6 of sixth order for the mechanical
waves of Rayleigh type (RTW6), or the BCD3 of third order for the mechanical waves of LTWs
(LTW3) and the BCD10 of tenth order for the piezoelectromechanical waves of Rayleigh type
(RTW10). They are ‘‘pure’’ waves of Love-type and Rayleigh type, which can be treated
separately for simplicity. Of the classical three-partial Love waves (LW3) in isotropic media, one
can read Ref. [10].
3. Theory

Let us treat the layered system shown in Fig. 1 on the wave propagation direction, in which the
sagittal plane is perpendicular to an odd-order symmetry axis for both treated media. Therefore,
for such waves, polarized along the x2-axis and perpendicular to the sagittal plane as well, only
three independent components of the modified Green–Christoffel tensor are treated, taking into
account the piezoelectric effect: GL22;GL42 ¼ GL24;GL44: The displacement U2 along the x2-axis
and the electrical potential j in view of plane waves are

U2 ¼ u exp½jkðn1x1 þ n3x3 � VtÞ�;

j ¼ f exp½jkðn1x1 þ n3x3 � VtÞ�; ð1Þ

where j ¼ ð�1Þ1=2; u and f are the corresponding amplitudes, k is the wavenumber in the direction
of wave propagation, and V ¼ o=k is the phase velocity. The coupled equations of motion can be
taken in the following view:
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Fig. 1. The coordinate system of the layered system, where h is the layer thickness.
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which correspond to waves with such polarization for the treated cubic materials. Eq. (2) is
obtained from the common equations of motion for piezoelectric materials, which are given in
Refs. [10,11], after straightforward transformations, which are applied for the treated case as well.
Therefore, the system of two homogeneous equations is written as follows:

C½ð1þ n23Þ � ðV=VtÞ
2
�u þ 2en3f ¼ 0;

2en3u � eð1þ n23Þf ¼ 0; ð3Þ

where Vt ¼ ðC=rÞ1=2 is the velocity of the bulk shear wave, C ¼ C44 ¼ C55 ¼ C66 is the
corresponding non-zero component of the elastic constants tensor, e ¼ e14 ¼ e25 ¼ e36 is the single
non-zero component of the piezoelectric constants tensor, e ¼ e11 ¼ e22 ¼ e33 is the single
component of material tensor of the dielectric constants; r is the material density. About the
physical properties of crystals and their representations by tensors, one can read Ref. [12]. In Eqs.
(1) and (3), there are directional cosines n1 ¼ 1; n2 ¼ 0; n3 ¼ n3: For the free space, in the equation
set (3), there is only one non-zero component e0 of the dielectric permittivity tensor.
Expanding the determinant formed by the coefficients before the amplitudes u and f in the

equation set (3), there appears a secular cubic polynomial equation for determination of four
polynomial roots:

n2 � Bn � K2 ¼ 0 with n ¼ 1þ n23: (4)

Therefore, the polynomial roots n
ðmÞ

3 are as follows:

n
ðmÞ

3 ¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ B=2	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4K2

p
=2

q
; (5)

where m ¼ 1; 2; 3; 4; but B ¼ ðV=VtÞ
2
� K2: Here K2 ¼ 4e2=Ce is the coefficient of electro-

mechanical coupling (CEMC). Expression (5) shows dependence of the n
ðmÞ

3 on the phase velocity
V : From the second equation of the equation set (3), one can determine the electrical potential
amplitudes fðmÞ as a function of the phase velocity V :

fðmÞ
¼ ð2e=eÞnðmÞ

3 =ð1þ ðn
ðmÞ

3 Þ
2
Þ: (6)

In expression (6), the corresponding displacement amplitudes uðmÞ are taken to be equal to unity.
The complete displacement U and the complete electrical potential F are functions of the

eigenvalues n
ðmÞ

3 and of the eigenvectors (uðmÞ; fðmÞ):

U ¼
X

m

f ðmÞuðmÞ exp½jkðn1x1 þ n
ðmÞ

3 x3 � VtÞ�;

F ¼
X

m

f ðmÞfðmÞ exp½jkðn1x1 þ n
ðmÞ

3 x3 � VtÞ�; ð7Þ

where f ðmÞ are called the unknown amplitudes. In expression (7), the indexm runs from 1 to 4 for a
layer but m ¼ 1; 2 for a substrate.
In Eq. (5), it is clearly seen that four polynomial roots can be either all imaginary ones (for

VoVt) or two real and two imaginary ones (for V4Vt). A situation with all four real roots is not
possible. According to expression (5), there is also the third possibility for the roots, such as two
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trivial and two imaginary roots for V ¼ Vt:

n1;23 ¼ 0;

n3;43 ¼ 	j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
: ð8Þ

The two trivial roots correspond to the bulk shear waves. In reality, the condition is always
fulfilled such as K2o1; even K2

51; therefore Ko1 as well. For example, K2ðBi12SiO20Þ � 0:565
and K2ðBi12GeO20Þ � 0:509; but K2ðGaAsÞ � 0:016 according to Ref. [13]. Thus, for the phase
velocity V ! þ1 ðV4VtÞ; the roots can be represented in the following view:

n1;23 ! 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

Vt

� �2
� 1

s
;

n3;43 ! 	j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
: ð9Þ

For two real roots in Eq. (9), it is noted that taking V � 10Vt there are absolute values of the real
roots, which are only one order greater than the ones of the imaginary roots in Eq. (9).
But for the case B ¼ 0 (VoVt owing to the condition K2o1), one gets

n1;2;3;43 ¼ 	j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K

p
: (10)

On the other hand, the second limit for all imaginary roots can be found from expression (5),
substituting the phase velocity V ¼ 0 ðV ! 0Þ that gives

n1;2;3;43 ¼ 	j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2=2� Kð1þ K2=4Þ1=2

q
: (11)

For weakly piezoelectric materials, taking into account the condition K2
51 and leaving only term

K under square root in expression (11), there are four imaginary roots, the values of which are
close to the ones in expression (10):

n1;2;3;43 ! 	j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K

p
: (12)

Therefore, for all cubic weakly piezoelectric materials in the wide range of the phase velocity,
0pVpVt; in which surface waves can exist, it is fulfilled that the absolute values of the
corresponding two negative imaginary roots increase from their minimal values in expression (8)
up to their maximal ones in expressions (10)–(12).
Two negative roots are taken for a substrate in order to have wave damping, while for a thin

layer all four roots are taken. For a layer and a substrate in Eqs. (1)–(7), there appear
corresponding components of the material tensors and the corresponding densities.
It is now necessary to briefly discuss the seven boundary conditions, treating the LTW7 waves,

which consist of both the electrical and mechanical parts of the ones both at x3 ¼ 0 and x3 ¼ h
(see Fig. 1). The boundary conditions at x3 ¼ 0 are: continuity of both the corresponding
mechanical displacement and the corresponding stress tensor component, and continuity of both
the electrical potential and the normal component of the electrical displacements. The boundary
conditions at x3 ¼ h are: equality to zero of the corresponding stress tensor component, and
continuity of both the electrical potential and the normal component of the electrical
displacements.
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Suitable phase velocities will be found, if the seven-order boundary conditions determinant
(BCD7) falls to zero. BCD7 is formed from the boundary conditions by ð7 7Þ-coefficient factors
for the seven unknown amplitudes f ðMÞ: two of which are related to a substrate, four correspond
to a layer, but the seventh one is reserved for the free space. The unknown amplitudes f ðMÞ; which
are also called weight factors, can be readily calculated for each suitable phase velocity from each
other, taking one of those as the known one. The coefficients are functions of the material
constants and of the phase velocity V as well.
4. Numerical results

In this numerical experiment, two layered systems are treated: the layer of Bi12SiO20 on the
substrate of Bi12GeO20; and vice versa, the layer of Bi12GeO20 on the substrate of Bi12SiO20:
Waves propagate in the direction along the x1-axis perpendicular to the symmetry axis of the
second order for both treated media, as shown in Fig. 1. Waves are localized in the thin layer of
thickness h with damping in the direction of the negative values of the x3-axis. The LTW7 waves
can exist in the direction of wave propagation perpendicular to the second-order symmetry axis
for the treated media of the non-centrosymmetrical class 23. Therefore, it will be seven partial
waves similar to the transversal-isotropic case [8]. The material constants Cijkl ; eijk and eij for both
piezoelectric materials can be chosen, for example, from Refs. [13,14].
The dispersion relations of the phase velocity dependence of the LTW7 waves, taking into

account the piezoeffect for both media on non-dimensional value of kh; where k is the
wavenumber in the direction of wave propagation and h is the layer thickness, are shown in Fig.
2a and b. The phase velocity of shear surface waves for bulk piezoelectric crystals can be written
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Fig. 2. The dispersion relations. (a) Seven modes of the dispersive LTW7 waves are shown by bold solid lines. The

‘‘dispersive solutions’’ are shown by simple solid lines situated above the corresponding modes of the LTW7 waves. (b)

Here, the LTW7 waves cannot exist, but the ‘‘dispersive solutions’’ exist.
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as V � Vph0ð1þ K2
DÞ
1=2; where Vph0 ¼ ðC44=rÞ

1=2 and K2
D is the so-called CEMC. In layered

systems, the coefficient K2
D depends on the layer thickness kh and is called the dynamic CEMC,

which was introduced in Refs. [3,4,8] for convenience. Fig. 2a represents the dispersion relation
for the layered system consisting of the layer of Bi12SiO20 on the substrate of Bi12GeO20: As it is
seen, the first mode of the LTW7 waves begins in this case at kh45:3; but not at kh ¼ 0; in
comparison with the classical three-partial Love waves (LW3) in isotropic media. In Table 1, for
comparison, seven modes of both the classical Love waves (without taking into account the
piezoeffect for both the layer and the substrate) and the LTW7 waves for treated media are
shown. In this case, for treated cubic piezoelectric crystals, the influence of the piezoeffect is
similar to the case treated in Ref. [3] for an isotropic layer on a transversal-isotropic substrate of
crystals of classes 622, 422, where for the first mode, the so-called ‘‘silence zone’’ [3] is present and
the dynamic CEMC is negative ðCEMCo0Þ:
All modes of the LTW7 waves in Fig. 2a are in the phase velocity range between the phase

velocity of the bulk shear wave in Bi12SiO20 (Vph1) and the one in Bi12GeO20 (Vph2). Probably, all
modes of the LTW7 waves are related to the second type of the waves, because the first mode of
the LTW7 waves begins at kh � 5:3; but not at kh ¼ 0: Therefore, the first mode of the LTW7
waves can be the second-type waves, but not the first-type ones, or it is possible to say that there is
no first mode of the waves and the modes begin with number 2 (see in Ref. [2] about waves of the
first and second types). Possibly, the LTW7 waves of the first type, beginning at kh ¼ 0; exist in
such directions of wave propagation, where the surface Bleustein–Gulyaev waves can propagate.
Different sectors of the existence of the surface BG waves were studied in Ref. [15], see also
Ref. [16].
Also, it is very surprising to find ‘‘dispersive solutions’’ for the phase velocity, which are greater

than the value of the phase velocity Vph2 of the bulk shear wave for Bi12GeO20: These dispersive
solutions can correspond to a new type of dispersive leaky waves with polarization, like the one of
the surface LTWs. The solutions are continuations of corresponding high modes ð2; 3; . . .Þ of the
LTW7 waves above the phase velocity Vph2 in the bulk crystal Bi12GeO20: At kh ! 1; the LTW7
waves approach the phase velocity Vph1 in the bulk crystal Bi12SiO20: These solutions correspond
to local minima of the BCD7, that is the usual thing for leaky waves, but not to global ones, which
are solutions for both surface and bulk waves. In this case, the local ones of the BCD7 do not fall
to zero; therefore, the solutions are not true solutions, but some experimentalists believe that such
dispersive leaky waves can be experimentally excited. These ‘‘dispersive solutions’’ correspond to
Table 1

The values of khth

Mode N0 The values of khth (LW3 waves) The values of khth (LTW7 waves)

1 0.0 5.30

2 17.76 28.24

3 35.51 51.18

4 53.27 74.12

5 71.03 97.06

6 88.79 120.0

7 106.5 142.9
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the taken negative roots for the treated substrates: one imaginary and one real root. If a positive
real root is taken instead of a negative one, such ‘‘dispersive solutions’’ are also found.
Fig. 2b represents the dispersion relation for the layered system consisting of the layer of

Bi12GeO20 on the substrate of Bi12SiO20: For this layered system, the phase velocity Vph2 for the
layer is greater than the one Vph1 for the substrate, and there are no solutions in the velocity range
between Vph1 and Vph2: It means that this is similar to the classical three-partial Love waves
(LW3) in isotropic media, where the LW3 waves can exist in the phase velocity range between
bulk shear waves V01 and V02; if V0 for an isotropic layer is less than the one for an isotropic
substrate. Also, the phase velocity solutions above the phase velocity Vph2 in Bi12GeO20 are
present in this layered system as well, and these ‘‘dispersive solutions’’ (which could be the new
type of the leaky waves) approach the phase velocity Vph2 at kh ! 1: It is possible to find a short
abstract about it in Ref. [17] in Russian, and also see Ref. [18].
In the famous book Springer Series on Wave Phenomena [16], surface (interfacial)

inhomogeneities on the surface of monocrystals (isotropic media as well), which play the role
of a very thin additional ‘‘softer’’ layer on the surface, and cause changes in the characteristics of
acoustic waves in monocrystals, were considered. For example, the problems of surface acoustic
wave interaction with periodic topographic gratings, widely used in filters and resonators, are
under careful consideration. The most important results of surface wave scattering by local defects
such as grooves, random roughness, and elastic wedges are given. Different theoretical
approaches and practical rules for solving the surface wave problems are presented. But in Ref.
[19], the theoretical analysis of Bleustein–Gulyaev surface acoustic wave propagation in a
prestressed layered piezoelectric structure were described, and numerical calculations were
performed for the case, where both the layer and the substrate are identical LiNbO3; except that
they are polarized in opposite directions. It results in an almost linear behavior of the relative
change in phase velocity versus the initial stress, and, therefore, possible applications in the design
of acoustic wave devices were suggested. Some of the problems can be met in real experiments
investigating manufactured two-layer systems, two of which are theoretically studied in the
present work.
In the review paper [20] were presented general considerations about physical reasons for the

existence of surface acoustic waves and, in particular, for different types of shear surface acoustic
waves. But in the more recent review [21] concerning shear-horizontal-type waves, attention was
paid to the relationship between the so-called surface skimming bulk waves (SSBW) and the so-
called surface Bleustein–Gulyaev–Shimizu waves (BGShW) in monocrystals, in particular, the
phase velocities of those waves coincide. But in Refs. [22,23], the investigations were done on
LTWs, as well as leaky surface acoustic waves (LSAW) consisting of isotropic Ta2O5 (or SiO2)
layer on Langasite (or Quartz) substrate. Both theoretical calculations and experimental
measurements of the phase velocity Vph were also presented, only for the first mode, with notation
that LSAW waves become the surface LTW waves. Unfortunately, only several experimental
points for the phase velocity were shown, with which it is impossible to have a true picture
about approximation of the LSAW mode to the bulk shear wave for the substrates. The
LSAW mode looks like a continuation of the LTW mode. It was also mentioned that for
Bi12GeO20=Y–X–LiNbO3; there was discontinuity of those modes.
The results, shown in Fig. 2a and b of the present paper, allow the discussion that the series of

the ‘‘dispersive solutions’’ is owing to the material properties, but not due to a relationship



ARTICLE IN PRESS

A.A. Zakharenko / Journal of Sound and Vibration 285 (2005) 877–886 885
between the ‘‘dispersive solutions’’ (leaky waves) and the LTW7 waves, because the solutions exist
in the layered system in Fig. 2b, where the LTW7 waves cannot propagate.
Table 1 shows the threshold values of khth for the beginning modes both for the classical LW3

waves and for the LTW7 waves. The values of khth for the LW3 waves were calculated with the
formula khth ¼ n0p=½ðVS=VLÞ

2
� 1�1=2 [24], where n0 ¼ 0; 1; 2; . . . and VS; VL are the phase

velocities of the bulk shear waves for the substrate and layer, respectively. The values of khth for
the LTW7 waves were taken from Fig. 2a. Therefore, it is possible to write that the influence of
the piezoeffect on the modes of the LTW3 waves causes a shift of all the LTW3 modes from the
first to the last mode, like the first seven modes shown in Table 1. In addition, it is clearly seen that
the beginning modes of the LTW7 waves are equidistant from each other, but not from the
corresponding ones of the classical LW3 waves. On the other hand, the influence of the piezoeffect
for layered systems consisting of piezoelectrics of classes 23 and 4̄32 can show the existence of a
single mode of dispersive Bleustein–Gulyaev–Love-type waves, probably, confined between two
corresponding BG waves in the propagation directions, in which the BG waves can propagate.
The BG waves exist in ½1 0 1� direction of wave propagation for the treated materials, which can be
the next subject for research. However, the interesting thing is to investigate the case when the BG
wave can exist only in either a layer or a substrate.
5. Conclusions

The numerically obtained dispersion relations of the LTW7 waves for the treated layered
systems consisting of cubic piezoelectric crystals Bi12SiO20 and Bi12GeO20 of class 23 have shown
that the LTW7 waves can exist in the phase velocity range between the bulk shear wave Vph1 in
bulk Bi12SiO20 and the one Vph2 in Bi12GeO20; if the phase velocity for the substrate is greater
than the one for the layer. In the layered system, in which the phase velocity for the substrate is
less than the one for the layer, the LTW7 waves cannot exist for the treated case. Also ‘‘dispersive
solutions’’ of the phase velocity were numerically found, which are situated above the phase
velocity range between Vph1 and Vph2: Also, it is possible to conclude that the ‘‘dispersive
solutions’’ are either properties of the BCD7 or the ones of the layered systems consisting of the
piezoelectric materials that can be used.
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